Where the BOLD signal goes when alpha EEG leaves.
نویسندگان
چکیده
Previous studies using simultaneous EEG and fMRI recordings have yielded discrepant results regarding the topography of brain activity in relation to spontaneous power fluctuations in the alpha band of the EEG during eyes-closed rest. Here, we explore several possible explanations for this discrepancy by re-analyzing in detail our previously reported data. Using single subject analyses as a starting point, we found that alpha power decreases are associated with fMRI signal increases that mostly follow two distinct patterns: either 'visual' areas in the occipital lobe or 'attentional' areas in the frontal and parietal lobe. On examination of the EEG spectra corresponding to these two fMRI patterns, we found greater relative theta power in sessions yielding the 'visual' fMRI pattern during alpha desynchronization and greater relative beta power in sessions yielding the 'attentional' fMRI pattern. The few sessions that fell into neither pattern featured the overall lowest theta and highest beta power. We conclude that the pattern of brain activation observed during spontaneous power reduction in the alpha band depends on the general level of brain activity as indexed over a broader spectral range in the EEG. Finally, we relate these findings to the concepts of 'resting state' and 'default mode' and discuss how - as for sleep - EEG-based criteria might be used for staging brain activity during wakefulness.
منابع مشابه
Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation.
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG...
متن کاملCorrelation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI
Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonline...
متن کاملNegative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements
Similar to the occipital alpha rhythm, electroencephalographic (EEG) signals in the alpha- and beta-frequency bands can be suppressed by movement or motor imagery and have thus been thought to represent the "idling state" of the sensorimotor cortex. A negative correlation between spontaneous alpha EEG and blood-oxygen-level-dependent (BOLD) signals has been reported in combined EEG and fMRI (fu...
متن کاملEEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal
In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that dif...
متن کاملEarly Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study
Simultaneous resting state functional magnetic resonance imaging (rsfMRI)-resting state electroencephalography (rsEEG) studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN) regions. Negative associations were found in occipital regions. In Alzhei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2006